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ABSTRACT 

A finite element method for the analysis of combined radiative and conductive heat transport in a finite 
axisymmetric configuration is presented. The appropriate integro-differential governing equations for a 
grey and non-scattering medium with grey and diffuse walls are developed and solved for several model 
problems. We consider axisymmetric, cylindrical geometries with top and bot tom boundaries of arbitrary 
convex shape. The method is accurate for media of any optical thickness and is capable of handling a wide 
array of axisymmetric geometries and boundary conditions. Several techniques are presented to reduce 
computat ional overhead, such as employing a Swartz-Wendroff approximation and cut-off criteria for 
evaluating radiation integrals. The method is successfully tested against several cases from the literature 
and is applied to some additional example problems to demonstrate its versatility. Solution of a 
free-boundary, combined-mode heat transfer problem representing the solidification of a semitransparent 
material, the Bridgman growth of an yttrium aluminium garnet (YAG) crystal, demonstrates the utility 
of this method for analysis of a complex materials processing system. The method is suitable for application 
to other research areas, such as the study of glass processing and the design of combustion furnace systems. 
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I N T R O D U C T I O N 
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g lass t e c h n o l o g y a n d h i g h t e m p e r a t u r e c rys t a l g r o w t h . T h e n e e d for b e t t e r u n d e r s t a n d i n g a n d 
des ign of s u c h sys t ems necess i t a tes t h e i n c o r p o r a t i o n of i n t e r n a l r a d i a t i v e effects i n t o g l o b a l h e a t 
t ransfer m o d e l s of t he se p roces se s . H o w e v e r , th i s i n t r o d u c e s s ignif icant c o m p l i c a t i o n s , b o t h in 
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terms of model formulation and in terms of solution strategies. In the most general case, the 
problem is described by the radiative transport equation coupled with the equation of change 
of energy, leading to a multi-dimensional integro-differential equation1. 

Analytical solutions to radiative transport problems are available only for a few simple cases, 
and for most geometries and boundary conditions of practical interest, one must resort to 
numerical solution techniques. These include Hottel's zone method, P-N approximation 
techniques, the discrete ordinates method, Monte Carlo methods, and others1-4. An overview 
of prior research in radiative heat transport, as well as a review of current solution techniques, 
is given by Howell2. A more detailed description of various numerical methods is found in a 
review by Chan3, and Viskanta and Mengiic4 discuss the application of several methods in the 
context of combustion furnace modelling. 

In this study, we present a novel finite element formulation for multi-dimensional internal 
radiation problems; we detail prior research using the finite element method later in this section. 
We are specifically concerned with several problems which are characterized by cylindrical 
geometries. Most early analyses of radiative transport concerned plane-parallel geometries of 
interest to astrophysics5-7 and preliminary studies by the heat transfer community8-10. 
Comparatively few studies have considered more complicated geometries. 

Many early analyses of cylindrical geometries considered one-dimensional problems of pure 
radiation (i.e. no conduction or convection). For example, Perlmutter and Howell11 applied 
the Monte Carlo technique to the problem of absorption, emission, and uniform heat generation 
in a grey gas trapped between grey and diffuse concentric cylinders. Kesten12 formulated the 
exact integral equation for the radial radiative flux for a prescribed temperature profile in a grey 
medium contained within a black-walled, infinite cylinder. 

Two- and three-dimensional formulations were considered by Dua and Cheng13 and Crosbie 
and Farrell14. Both studies obtained analytical expressions for the radiation field accompanying 
prescribed temperature distributions across cylindrical enclosures containing grey participating 
media. In addition, Crosbie and Farrell accounted for anisotropic scattering and investigated 
several radiation boundary conditions. Lin15 formulated expressions for radiative fluxes and 
source functions in various geometries. His formulations for cylindrical geometries were disputed 
by Thynell16, who later applied his own expressions to the problem of radiation in a grey, 
participating, and isotropically scattering medium in a finite cylinder with grey and diffuse 
walls17. Siegel18,19 formulated and solved the problem of transient cooling of an absorbing, 
emitting, and scattering cylinder in a study of waste heat dissipation from power plants in outer 
space via radiative transport. 

Studies which consider combined conduction and radiation in cylindrical geometries are not 
so abundant. Kim and Smith20 used the zone method to study radiation and conduction in a 
finite cylinder with grey and diffuse walls. Results were shown for cases where prescribed wall 
temperatures were given (Dirichlet boundary conditions), as well as prescribed fluxes on the 
side wall (flux boundary conditions). This approach was extended by Al-Turki and Smith21, 
who modelled the interaction of radiation, conduction, and convection (fully developed laminar 
or turbulent velocity profiles were assumed a priori), in a furnace containing a soot/gas mixture. 
Tabanfar and Modest22 considered conduction, convection, and radiation in a black-walled 
axisymmetric cylinder. The method of discrete ordinates, coupled with finite differences, was 
applied by Yücel and William23 to the analysis of heat transfer in a grey, emitting, absorbing 
and scattering finite cylinder. One-dimensional studies of heat transfer in a participating and 
conducting medium trapped between infinite, concentric black cylinders were presented by 
Pandey24 and Harris25. 

The finite element method (FEM) was applied to neutron transport problems in the early 
1970s (see, for example Reference 26); however, even though the transport equations are 
essentially identical, the use of finite element methods to solve for radiative transport in 
participating media has occurred only fairly recently. Wu et al.21 and Fernandes et al.28,29 

applied the Galerkin FEM to the problem of heat transfer in a grey, absorbing, emitting, 
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conducting and isotropically scattering medium trapped between infinite grey and diffuse parallel 
plates. Razzaque et al. were the first to apply the Galerkin FEM to the two-dimensional problem 
of pure radiation in a participating medium30 and combined radiation and conduction in a 
rectangular enclosure with grey walls31. The Galerkin FEM was also employed by Chung and 
Kim32 in their study of combined radiation, conduction and convection in two-dimensional 
flow through a converging or diverging region between two plates. 

Dombrovskii and Barkova33 developed a finite element scheme for the solution of the radiative 
transport equation. Their method, which is based on the expansion of the intensity in linear 
basis functions, was applied to two different problems of two-dimensional radiant heat transfer 
in an anisotropically scattering, flowing gas/particle mixture. A hybrid Monte Carlo/FEM 
algorithm was developed by Kraus34. The radiative term in the equation of change of energy 
was computed using a Monte Carlo (MC) algorithm, while the equation itself was solved (with 
the MC input) using the Galerkin FEM with bilinear elements. Recently, Saltiel and Naraghi35 

suggested that their method, based on discrete exchange factors, would be highly compatible 
with finite element meshes, thus simplifying calculations in complex geometries. 

Our development of finite element methods stems from the interest we have in the role of 
radiative transport during the growth of single crystals from the melt, which is important in 
many oxide systems such as yttrium aluminium garnet (YAG) and sapphire (see Refs. 36-39 
for more details). The FEM has been successfully employed in the past to solve free-boundary 
transport problems with irregular domain geometries and complicated boundary conditions 
associated with crystal growth processes40. However, most of the reported theoretical studies 
were not concerned with semitransparent crystals. Derby et al.41 give a comprehensive analysis 
of the Czochralski growth of oxide crystals, but did not include internal radiative effects in their 
study. A greatly simplified two-band radiation transport model in which one wavelength band 
is completely transparent and the other completely opaque was used by Crochet and 
co-workers42,43 and by Thomas et al.44 in their studies of large scale crystal growth systems. 

The effects of internal radiative heat transport in semitransparent crystal growth have been 
studied by various authors using one-dimensional models of conduction and radiation for highly 
idealized geometries45,46 and for growth configurations which produce very long, thin 
crystals47,48. In addition there has been some prior work with simplified two-dimensional models. 
An optically thick approximation (P1) was employed by Kim and Yimer49, who studied 
solidification in a finite annular region. The same approach (P1) was taken by Matsushima and 
Viskanta50 in their study of combined radiation, conduction and convection in a two-dimensional 
crystal growth configuration. They accounted for spectral effects, but did not account for the 
shape and position of the melt/crystal interface, which was fixed a priori. More recently, we 
have applied the method described in this study to solve the problem of quasi-steady-state crystal 
growth in the vertical Bridgman configuration, calculating the effects of an emitting, absorbing 
and conducting solid phase along with the determination of the melt/crystal interface position36. 

FORMULATION 

In this section, we pose two model problems which involve energy transport through participating 
media. The first problem concerns heat transfer through a finite axisymmetric enclosure 
containing a participating medium and demonstrates the power of the finite element method to 
accurately calculate temperature fields for a variety of parameters and boundary conditions. 
The techniques developed for this problem have also been successfully applied to describe heat 
transfer and fluid flow in a Rayleigh-Bénard system which features a radiatively participating 
fluid51. The second problem is of more practical interest and describes the solidification of a 
semitransparent crystal. Further results for this system are reported in References 36 and 37. In 
the ensuing discussion, we present the governing equations and follow with the formulation of 
our model problems. 
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A radiatively participating medium absorbs, emits, and scatters infra-red radiation. We 
consider here a non-scattering medium with optical properties which are temperature-
independent and grey (wavelength-independent) in which both conduction heat transfer and 
radiative processes are significant. The dimensionless form of the steady-state governing equation 
of energy within the medium is: 

where V is the gradient operator, N is the conduction-to-radiation parameter, Τ is the 
dimensionless optical absorption coefficient or the optical thickness of the medium, T is 
temperature, and qR is the radiative energy flux vector. The divergence of the radiative flux 
vector is given by: 

where i' is the total directional radiative intensity and Ω is the solid angle. All variables and 
dimensionless groups are defined in the Nomenclature section. 

The total directional radiative intensity is represented by the integrated form of the radiative 
transfer equation1: 

where i'(Ω) is the radiation intensity evaluated at a certain point within the domain and directed 
along the solid angle Ω, l is the distance from the domain boundaries along the solid angle Ω, 
and l† is a dummy variable of integration. The first term on the right-hand-side of the equation 
represents radiative intensity coming into the medium from the system boundaries, while the 
second term accounts for incoming radiation emitted from the intervening media between the 
point at which i' is evaluated and the boundaries. 

The boundary radiation intensity, i'(Ω, 0) in the above equation, must satisfy the following 
condition. For diffuse and grey boundaries, the intensity directed towards the interior of the 
domain is: 

where Tb represents the temperature of the boundary, εi is the emissivity of the inner surface of 
the domain, and qR·(—nb) is the net radiative flux into the domain at its boundary. The 
boundary temperature Tb is taken throughout this study to represent both the temperature of 
the wall and the temperature of the medium at the boundary. This must always be true as long 
as any conduction heat transfer is present. However, if only radiative transport is considered, 
there can be a discontinuity between the temperature of the medium and that of the adjacent 
boundary, giving rise to the phenomenon referred to as radiation temperature slip. 

Substitution of (2)-(4) into (1) gives rise to an integro-differential energy balance equation. 
Boundary conditions are presented in the following two sections for the model problems 
considered here. In a subsequent section, the specific procedures employed to solve these problems 
are discussed. 

Participating medium in an axisymmetric enclosure 
For this model problem, we consider a finite, uniform-radius, axisymmetric domain with an 

arbitrarily shaped, convex (with respect to the medium) top and bottom (see Figure 1). The 
domain contains a thermally conducting, semitransparent material with grey and 
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temperature-independent properties. Convective transport is neglected, as is the scattering of 
radiation. The boundaries and grey and diffuse. 

We consider boundary conditions for the temperature field which are both general and 
physically significant. Dirichlet conditions are imposed along one part of the boundary (denoted 
∂Dd), 

and energy flux conditions are imposed along the remainder of the system boundary (denoted 
dDf) 

where the subscript b denotes a boundary property and nb is an outward-pointing unit vector 
normal to the system boundaries (see Figure 1). The flux qb in (6) is usually represented by one 
of the following forms: 

where Bi is a dimensionless heat transfer coefficient, the Biot number and Ra is a dimensionless 
surface radiation heat transfer coefficient, sometimes referred to as the Radiation number. Both 
of these parameters refer to energy transport outward from the domain surface. 

The last two conditions of (7) are often summed to represent a boundary which is losing heat 
via combined convection and radiation. Note that for the radiative cooling of a surface, we 
employ the convention of an effective sink temperature, T∞. To accurately describe surface 
interactions in a radiative enclosure filled with a non-participating medium, this parameter must 
take into account geometric factors, surface emissivities and temperatures (e.g. through the use 
of Gebhart's method52). 
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We will consider axisymmetric temperature distributions which additionally require that, along 
the centreline of the system, 

where er is a unit basis vector oriented in the radial direction. 

Solidification within a cylindrical ampoule 
The second problem considered in this study represents the growth of a semitransparent crystal 

in a vertical Bridgman system. This model is applicable to the high-temperature melt growth 
of many refractory crystals, such as sapphire and yttrium aluminium garnet (YAG). We describe 
below our model system. 

An axisymmetric cylindrical ampoule containing both crystalline and molten phases travels 
slowly (characteristic translation rates are on the order of 1 mm/h) downward through the 
cylindrical bore of a furnace. The ampoule moves from a hot zone (with constant temperature 
T = Th) through an adiabatic zone to an isothermal cold zone (T = TC). The furnace wall 
temperature in the adiabatic zone is approximated by a linear drop between Th and Tc. A 
schematic diagram of this system and its mathematical representation are shown in Figure 2. 

We consider combined radiative and conductive transport in the solid crystalline phase, while 
conduction alone is assumed to dominate heat transfer through the melt. Since the translation 
rate is very small, we apply a quasi-steady-state analysis. This approach assumes that the local 
axial solidification velocity is everywhere equal to the ampoule translation rate and that the 
time scale for heat transfer through the system is fast enough so that all transients can be ignored 
and the steady-state heat transfer equations are applicable. In addition, the ampoule is considered 
to be vanishingly thin and is therefore ignored in the heat transfer analysis. (The effects of the 
ampoule on heat transfer are considered elsewhere37.) 

Boundary conditions account for natural convection combined with enclosure radiation heat 
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transfer between the ampoule and interior furnace bore: 

where the three Biot numbers account for different heat transfer coefficients, Tfu(z) represents 
the furnace temperature profile and A ≡ R/L is the aspect ratio of the ampoule. In formulating 
these boundary conditions, we have assumed that the ampoule is close enough to the furnace 
walls so that the effects of the enclosure geometry are not important and the ampoule exchanges 
heat directly with the adjacent furnace wall. 

The melt/crystal interface is a free boundary in this model; its position and shape are not set 
a priori but are determined along with the temperature field of the system. Two conditions must 
be satisfied along the melt/crystal interface. The isotherm condition prescribes that the 
solidification front (described by z = H (r)) fall along the melting-point isotherm of the system, 

where Tmp is the melting temperature of the material. The second condition consists of a simple 
energy balance, taking into account the energy fluxes across the interface and the release of 
latent heat at the interface, 

where qm and qs are heat fluxes in the melt and solid phases, respectively, nms is a unit vector 
normal to the interface directed at the melt, Pe is a dimensionless growth rate, here expressed 
as a Peclet number, and S is the Stefan number, which is a dimensionless latent heat. 

As in the previous problem, axisymmetry requires that 

METHODOLOGY 

In the following section, we describe the general approach to solving the integro-differential heat 
balance equation (1) using the Galerkin finite element method (GFEM) and the 
Newton-Raphson iteration scheme. Of particular importance for combined mode heat transfer 
problems is the accurate evaluation of the integrals which arise in the radiative flux terms of (1). 

Numerical solution: GFEM and Newton-Raphson iterative method 
The Galerkin finite element method provides the framework for solving both model problems. 

This choice of methodology was motivated by the self-consistent manner in which realistic 
boundary conditions and complex geometries are implemented. The domain of interest is 
discretized into a two-dimensional mesh of elements in the plane 0 = 0, and the temperature 
field is expanded by a C° finite element basis set defined by this mesh54, 
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where T(r,z) is the dimensionless temperature field defined over our axisymmetric domain, NT 
is the total number of nodes in the finite element mesh, {T{i)} are unknown coefficients in the 
expansion which represent the temperature at each node, and {Φi(r, z)} are the 
piecewise-continuous basis functions. We employ nine-node quadrilateral Lagrangian basis 
functions for all of the calculations reported here. 

The Galerkin weighted residual equations are obtained by multiplying the field equation (1) 
by the basis functions, {Φi(r, z)}for i = 1 , . . . , NT, and integrating over the problem domain D, 

The divergence theorem is then applied to these weighted residuals, yielding the weak form of 
the equation set, 

where ∂D denotes the surface surrounding the domain and nb is an outward-pointing unit normal. 
The application of the divergence theorem to both terms of (16), resulting in the weak form 

given above, has not been used in prior multi-dimensional calculations31-34. (Fernandes et al.29 

employed this formulation for a one-dimensional problem but did not use it in an earlier study28.) 
However, this form of the equation set is particularly advantageous to employ. The first term 
of the equation allows for a natural implementation of various energy flux boundary conditions. 
The second term of (17) contains components of the radiative flux vector itself rather than the 
divergence of the flux vector; this simplification will be further discussed in the following section. 

Boundary conditions for the temperature field are imposed in the following manner. For the 
flux boundary conditions along ∂Df, the kernel of the surface integral in (17) is replaced by the 
desired form from (6) and (7). Over portions of the domain boundary where Dirichlet conditions 
apply (∂Dd), the appropriate residual equations from (17) are replaced by essential conditions, 
resulting in the boundary nodal temperature values simply being specified by the conditions 
from (5). 

To make the original integro-differential heat balance equation (1) well posed, the boundary 
term i'(Ω, 0) of the integrated radiative transfer equation (3) must be specified. This is easily 
accomplished for portions of the system boundaries where flux conditions are specified. A heat 
balance along ∂Df yields an explicit equation for the radiative flux at the boundary, 

where both terms on the right-hand-side of the equation can be determined directly from the 
temperature field—the first term is obtained by differentiating the finite element representation 
of the temperature field, (15), and the second term is given directly by (7). Equation (18) is 
used in conjunction with (4) to specify i'(Ω, 0). 

No explicit form exists for boundaries where Dirichlet conditions are imposed, since the total 
heat flux from the boundary qb· ( — nb) depends on both the conductive and radiative fluxes. 
Instead, we consider the following balance for the net radiative energy flux into the domain at 
its boundary, 

In this equation i'(Ω) is integrated over a hemisphere surrounding the point of interest on the 
boundary. This integration accounts for the directional intensity of radiation emitted from within 
the domain (and its boundaries) towards this point of interest (see Figure 3). The quantity ψb 
is determined by the angle between the outward pointing normal to the surface nb and the 
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direction in which the intensity is directed. Along ∂Dd, we represent the net radiative flux into 
the system at the boundary with a finite element expansion, 

where Nq is the number of nodes on the part of the boundary where the Dirichlet condition is 
applied (∂Dd), x is the surface coordinate, and q(i) represents the interpolated values of the net 
radiative flux into the system at each surface node. For this study, we use one-dimensional 
Lagrangian quadratic basis functions for this expansion. We then form Galerkin residual 
equations by multiplying (19) by the basis functions, {Γi} for i = 1 , . . . , Nq, and integrating 
over the appropriate portions of the boundary, 

The surface radiative fluxes determined by these equations are then used in (4) to calculate 
i'(Ω, 0). 

Equations (17), appropriately modified for the desired boundary conditions, and, if Dirichlet 
conditions are employed, equations (21) are evaluated by substituting the finite element 
approximations for the temperature field (15) and radiative boundary fluxes (20) into these 
integral equations and computing their values by Gaussian quadrature. Nine-point quadrature 
was used for all volume integrals, and three-point quadrature was employed to evaluate all 
surface integrals. More details of this procedure, especially with regard to the radiative terms, 
are provided in the next section. This procedure results in a non-linear algebraic equation set 
for the coefficients {T(i)} and {q(i)}. This set is conveniently expressed as: 

where x = (T(1), T ( 2 ) , . . . , TINT) q(1), q(2) ..., q(Nq))T is a vector of dimension NT + Nq. 
The Newton-Raphson method is used to solve this set of equations. An initial guess for the 

vector of unknowns is made, x(0), and successive updates to the unknowns vector are computed 
using the following iterative scheme: 
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where k is the iteration counter. The update vector δ(k) is generated by solution of the linear 
equations 

where Jij = ∂Ri/∂xj are elements of the Jacobian matrix. Closed-form expressions are used to 
calculate most of the Jacobian elements; however, we resort to numerical approximations for 
those whose analytical form is intractable (typically due to complications from the radiation 
integrals). Further details are presented in ensuing sections. The iterations are continued until 
the L — 2 norm of the update vector δ(k) is smaller than some specified criterion, e.g. 
|| δ(k)||2 < 10 -7 . Typically, 4-7 iterations are required until convergence is achieved. 

The linear equation set (24) is solved directly via LU decomposition. Unlike the banded 
Jacobian matrix structures which typically arise during GFEM solutions to conventional heat 
transfer problems, the Jacobian matrices for the problems considered in this study are dense 
due to long-range radiative interactions through the participating medium. This increases the 
time required for the solution of (24). However, this is not an important issue since calculation 
of the radiative terms dominates the overall CPU time requirements, as is further discussed in 
the Results section. 

When the method is applied to a solidification problem one must also account for the free 
boundary (melt/crystal interface, z = H(r)) whose position is not known a priori. This 
significantly complicates the analysis, which now involves the expansion of the interface position 
in a one dimensional quadratic basis set, 

where NH is the number of nodes on the interface. The extra set of unknowns which track the 
solidification front ({H(i) i= 1 , . . . , NH}) are determined via the isotherm method, as described 
by Ettouney and Brown53. The mesh deforms from one Newton iteration to the next until the 
converged mesh conforms to the correct shape and position of the interface for a given steady-state 
solution. This renders the cost saving Swartz-Wendroff approximation (described below) 
ineffective. We have therefore abandoned the approximation for this problem and have solved 
the rigorous form of the radiation terms. In addition, all terms of the Jacobian matrix were 
calculated in closed-form, except for the derivatives of the components of the radiative flux 
(qR·er and qR·e,) with respect to the interface position {H(i), i = 1 , . . . ,NH} . These entries were 
calculated numerically using a first-order finite difference approximation, with a perturbation 
in the value of H(i) on the order of 10 - 8-10 - 1 0 . 

Evaluation of the radiative energy flux 
The accurate evaluation of the radiative terms in (17) is one of the most important and difficult 

aspects of combined-mode heat transfer problems. In the following discussion, we address these 
issues with respect to the geometry of the first model problem. Although these equations are 
also applicable to the crystal growth problem (the crystalline phase is considered to be a 
participating medium), their specific form will be somewhat different. 

As shown above in the weak formulation of the residuals, only the components of the radiative 
flux vector, namely qR • er and qR • e2, need be computed rather than the divergence of the radiative 
flux vector, ▿·qR. The radiative flux through any mathematical surface within the domain is 
given by: 

where x represents the direction normal to the surface, i'(Ω) is the radiation intensity as defined 
in (3), and ψx is the angle between i'(Ω) and the normal to the surface. 
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Although the temperature field is assumed to be axisymmetric, the radiation intensity depends 
on the three-dimensional geometry of the entire enclosure. Fortunately, some simplifications 
from symmetry are possible. The axisymmetry of the system allows us to solve for the temperature 
field in a manner which is independent of the polar angle Φ. As shown in Figure 4, we choose 
to evaluate the problem in a plane of constant Φ, which for convenience is taken as Φ = 0. 

As mentioned previously, nine-point and three-point Gaussian quadrature is used to evaluate 
the volume and surface integrals in the residual equations (17) and (21). These quadrature 
points (or Gauss points) lie on the Φ = 0 plane shown in Figure 4. At these particular points, 
we must evaluate radiative terms given by (26). This is most readily accomplished by defining 
local spherical coordinate systems at each Gauss point. 

The local spherical coordinate system at one such point is illustrated in Figure 4. The colatitude 
0 is well defined with respect to the z-axis of the system, while the longitude a is positioned such 
that α = 0 corresponds to Φ = 0. As a result of the axisymmetry of the system, it is sufficient 
to consider a values of 0 to π. The colatitude θ also spans the same angles, 0 to π. A view of 
the system from above is shown in Figure 5a, while Figure 5b describes a cut through the domain 
at a constant a value. The coordinates (r,z) in Figure 5b mark the origin of this coordinate 
system (the location of the Gauss point). 

A solid angle increment in this localized coordinate system is given by: 

and (26) becomes: 

A natural splitting of this integral produces three regions with respect to values of the 0 
coordinate: θ = 0 to θ2, θ = θ2 to θ1 and θ = θl to π, see Figure 5b. 
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Applying this splitting along with substitution from (3) and (4), (28) becomes: 

where lj (j = 1,2,3) is the ray length between the point (r, z) and a point on one of the boundaries 
(rbj,zbJ). The net radiative fluxes into the system at the boundaries, qR·( — nb1), qR·(—nb2), 
and qR· (—er)|b3 are available using (18) along ∂Df or solving (21) along ∂Dd. The specific form 
of the surface fluxes (19) along the Dirichlet boundary are presented in Appendix A. 

The direction cosines of (29) are, in the case of ex = er, 

and, for ex = er, 

The integration limits, θ1(α), θ2(α) are calculated by, 

where 

and j = 1,2. 
To speed the evaluation of the integrals of (29), the variables of integration must be chosen 

so that all quantities in the integrands can be evaluated explicitly. This is achieved through the 
choice of the longitude a and the dummy variable l†j, (j = 1,2,3) as two of the three variables 
of integration. In terms where j = 3 (i.e. terms which view the side wall, θ2(α) < θ < θ1 (α)), 
the colatitude θ is an acceptable third variable of integration. However, all integrand quantities 
are not explicit when j =1 ,2 (terms which view either end of the enclosure), so a new variable 
of integration y(θ) is defined, see Figure 5. The expressions that relate the known variables (y. 
or θ, α, l†j, etc.) to the unknown quantities needed for the evaluation of (29)-(32) are given in 
Appendix B. 

A repeated discretization with Gauss-Legendre quadrature is employed for the evaluation of 
the solid angle and line integrals in (29) and (21). Fidelity to the GFEM would require all 
solid angle integrals and line integrals to be evaluated element-by-element since the representation 
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of the temperature field and the finite element isoparametric mappings are only piecewise 
differentiable. However, it is much more efficient to evaluate these integrals using the global 
representation described above with self-consistent interpolation of the temperature field from 
the finite element approximation (15). In addition, several measures of the model problems 
presented here indicate that there was negligible loss of accuracy using this global approach. 
The details of these integral evaluations are presented in Appendix C. 

Swartz- Wendroff approximation 
It is possible to make an approximation to the residual equations which significantly reduces 

computational effort for systems of equivalent optical thickness where the geometry does not 
change and the finite element mesh is fixed in position. The general idea, originally employed 
by Swartz and Wendroff55, is that one can simplify a problem considerably, often with negligible 
loss of accuracy, by applying mathematical operations only to the unknown coefficients of an 
expansion. In the context of our finite element methodology, this idea can be used to approximate 
the T4 functionality in all radiation terms, so that: 

Since Lagrangian finite element basis functions are defined to be unity at one node of the mesh 
and zero at the rest, this relation is exact at each node. This approximation has been independently 
employed in the analysis of radiation heat transfer among surfaces in an enclosure containing 
a non-participating medium by Dupret et al.43; however, it has not previously been applied to 
the problem of radiative transport in a participating medium. 

This technique is similar in spirit to zonal methods56,57 and exchange-factor methods35 which 
approximate radiative energy exchange among constant-temperature volume elements. These 
methods allow for the independent calculation of geometrical factors, thus speeding repeated 
heat transfer calculations; however, their utility is limited by the assumption of isothermal zones 
and the general difficulty of implementation with finite-difference or finite-element meshes4,35. 
The Swartz-Wendroff approximation employed here does not suffer from these limitations, 
since it can be consistently applied to any representation of the temperature field. 

Using this approximation, we simplify the residual equations (17) and (21) to: 

and, 

respectively. 
The matrices (A, A*, B, B*, C, C*), and the vectors (F, F*, K, K*), represent geometric factors 

weighted by a given optical thickness, Τ, that are independent of the temperature field and can 
therefore be evaluated once and then stored. The expressions defining these matrices and vectors 
are presented in Appendix D. It should be stressed, however, that these expressions are 
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mesh-dependent, so that any technique which results in a different mesh, such as the front-tracking 
methods mentioned earlier, cannot fully exploit these computational savings. 

An additional advantage of employing the Swartz-Wendroff formulation is considerable 
simplification of the Jacobian matrix entries. Closed-form expressions for all entries are easily 
defined as, 

when Ri corresponds to (35), and 

when Ri corresponds to (36). 

RESULTS 

We present results from the two model problems in the following sections. The first involves a 
simple finite cylinder which was chosen to benchmark our method against other published 
results. The second example, a quasi-steady-state model for Bridgman growth of semitransparent 
crystals, demonstrates the versatility of our method for more complicated geometries and 
boundary conditions. 

Participating medium contained by a right circular cylinder 
For this problem, the arbitrarily shaped top and bottom of the general geometry were chosen 

to be flat surfaces so that the system becomes a finite right circular cylinder. A uniform heat 
generation term is added to the energy balance so that the temperature residual equation (17) 
becomes, 

where A = R/L is the aspect ratio of the cylinder (R is the radius of the cylinder and L is its 
height) and Q is a uniform volumetric heating term. 

The simple shapes of the top and bottom boundary allow for an explicit formulation of the 
problem without employing the transformation θ→ y described earlier and in Appendix B. In 
all calculations, unless stated otherwise, a mesh measuring sixteen biquadratic quadrilateral 
elements in the axial direction and ten elements in the radial direction was used, resulting in a 
total of NT = 693 temperature unknowns. The longitude a was divided into six equal segments, 
and a three-point quadrature rule was applied in each segment. Within each of the three regions 
0 ≤ θ ≤ θ2, θ2 < θ < θ1, and θ1 ≤ θ ≤ π) in the meridional planes (constant a), the colatitude 
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8 was divided into six equal segments, and a three point quadrature rule was applied in each 
segment. The path integrals were discretized using a single segment with five Gauss points. 
These discretizations of the finite element mesh and radiation integration quadrature yielded 
temperature fields which were numerically convergent. 

The Swartz-Wendroff approximation was employed in the solution of this problem. Typical 
computation times of 100-250 CPU seconds were needed for the Swartz-Wendroff geometric 
factors. These factors needed to be calculated just once for a given discretization. Each 
Newton-Raphson iteration required approximately 10-15 CPU seconds. All times reported 
here were obtained on the Cray-2 at the Minnesota Supercomputer Center. Generally, 5 or 6 
iterations were needed to converge with a criterion of || δ(k) ||2 < 10 -7 . 

Several cases of this model problem are examined below. First, the aspect ratio of the cylinder, 
A, is varied to approximate an infinite parallel plate geometry (A → ∞) and an infinite cylinder 
(A→ 0), and our results are compared to prior literature values. Finally, a two-dimensional 
geometry with simple boundary conditions is tested against results in the literature, and new 
results for the same geometry with more complicated boundary conditions are generated to 
demonstrate the versatility of our method. 

Infinite parallel plates: A→ ∞. For this case, the aspect ratio of the cylinder was set to 
A = 100, approximating a pair of infinite parallel plates. Dirichlet conditions were enforced 
along all exterior surfaces; the dimensionless temperature of the lower surface was set to Tbt = 0.5 
and the upper surface temperature was set to Tb2 = 1. To ensure that the problem is well-posed, 
the edge temperature Tb3 was set to a linear profile connecting both the upper and lower surface 
temperatures. The heat generation term in (39) was set to zero (Q = 0). Centreline temperature 
profiles are shown as lines in Figure 6 for various values of the wall emissivity for the case of 
N = 0.01 and Τ* = Τ/Λ = 1. The temperature profiles clearly show the non-linear effects caused 
by radiative transport. The discrete points plotted in Figure 6 are obtained from the work of 
Viskanta and Grosh8, who applied the method of successive approximations to the problem of 
transport between flat plates. The agreement between our results and those obtained by Viskanta 
and Grosh8 is excellent for εt= 1.0 and εi = 0.5. However, our temperature profiles for εi = 0.1 
differ slightly from the results of Viskanta and Grosh8. 
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Table 1 Total heat fluxes in the limit of flat plates (A →∞) 

Total axial flux 

Parameter values 

N = 0.01 
τ* = 1.0 
εi = 1.0 
N = 0.01 
τ* = 1.0 
εi = 0.5 

N = 0.01 
τ* = 1.0 
εi = 0.1 
N = 0.01 
τ* = 0.1 
εi = 1.0 

N = 0.1 
τ* = 1.0 
εi = 1.0 
N = 0.1 
τ* = 0.1 
εi = 1.0 

This study 
( - q T ( 0 . 0 ) · e z ) 

0.5676 

0.3272 

0.1566 

1.0798 

0.7694 

2.8799 

Viskanta and Grosh8 

0.596 

0.338 

0.156 

1.074 

0.798 

2.880 

Pandey24 

0.546 

— 

— 

1.090 

0.736 

2.885 

Crosbie and Viskanta9 

0.5675 

— 

— 

1.0799 

0.7694 

2.8799 

Values of the centreline axial total heat flux for different values of εi, N and τ*, are tabulated 
in Table 1 together with fluxes reported in Ref. 8, as well as those reported by Crosbie and 
Viskanta9 who also studied transport between flat plates. Also included in this Table are fluxes 
calculated by Pandey24 for the case of heat transport between infinite concentric cylinders at 
the limit of equal inner and outer radii. Our flux values are in good agreement with all three 
studies. 

Infinite cylinder: A →0. The limit of an infinite cylinder was approximated by setting A = 0.01. 
In addition, values of Q = 4.0 and τ = 1.0 were used with Dirichlet boundary conditions of 
Tb= 1.0 on all three surfaces of the cylinder. Mid-height (z = 50) radial temperature profiles 
are plotted in Figure 7 for two different values of the conduction-to-radiation parameter (N). 
The discrete points represent results obtained by Yücel and Williams23 for an infinite cylinder 
using a combined discrete ordinates/finite differences method. The agreement between our results 
and those presented by Yücel and Williams is excellent23 for N = 1.0 and good for N = 0.1. 

Finite right circular cylinder. Our method was also tested against previous two-dimensional 
results obtained by Yücel and Williams23, whose method combines discrete ordinates and finite 
differences. The aspect ratio of the cylinder was set at A = 0.5, the heat generation term was 
taken to be Q = 4τ, and all boundaries were held at a uniform temperature of Tb — 1.0. Extensive 
tests were conducted for various values of Τ, N, and εt. Solid lines in Figure 8 show mid-height 
(unless stated otherwise) radial temperature profiles from this study, while the discrete points 
are from Reference 23. 

The radial radiative flux, qR·er, and the radial total flux, qT·er, along the side wall are plotted 
as functions of z in Figures 9 and 10, respectively. The total flux was calculated using the 
consistent Galerkin FEM post-processing technique suggested by Gresho et al.59, and the nodal 
values were spline fit in Figure 10. Agreement between our results and those of Yücel and 
Williams is excellent in most cases, though there are some discrepancies in the radiative flux 
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values close to the top (or bottom) of the cylinder in some of the cases, as well as an overall 
small discrepancy in the results corresponding to the case of AT = 0.1, Τ = 2.0 and εi = 1.0. 

Finally, we have made some calculations designed to show the versatility of this method in 
handling mixed boundary conditions and extreme parameter values (e.g. Τ « 1 and Τ » 1). In 
these calculations, the aspect ratio of the cylinder was set at Λ = 1.0, the heat generation term 
was discarded (Q = 0), and the wall emissivity was assumed to have a uniform value of εi = 0.5. 
The boundary conditions were set as follows. Along the bottom surface, a no-flux boundary 
condition was specified, 

a constant temperature was set along the top surface using a Dirichlet condition 

and a position-dependent temperature was applied at the wall of the cylinder, 

For this case, the discretization was further refined to a mesh of 14 x 14 uniform biquadratic 
elements. In addition, ray length integrals were discretized using a single nine quadrature point 
segment; however, the discretization of the solid angle integrals (θ, α) remained the same as in 
the earlier examples. The temperature field is well-resolved for all cases. 

Temperature contours for various values of N and x are shown in Figure 11. For the case of 
a large conduction-to-radiation parameter, N — 100, the temperature field remains conduction 
dominated regardless of the value of τ. For these cases, the temperature contours enter the 
bottom surface perpendicularly, which is consistent with the conductive flux dominating the 
no-flux boundary condition (40). 

For the lower values of the conduction-to-radiation parameter, N = 0.01, the temperature 
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field is strongly affected by radiative transport. In the case of the optically thick medium τ = 100, 
the radiative interactions are confined to very short distances, and the radiative flux is governed 
by the Rosseland diffusion equation1,58 

where the tilde denotes dimensional quantities. In this limit, the governing integro-differential 
equation behaves as the classical partial differential equation describing conduction heat transfer 
with an additional temperature-dependent term added to the thermal conductivity. Notice that 
the isotherm spacing in most of the domain is much larger than the cases of N = 100; here, the 
effective thermal conductivity is much larger due to the radiative contribution. In addition, a 
zero axial gradient is maintained at the bottom of the cylinder even though the transport is 
dominated by radiation. For the optically thin case of Τ = 0.01 (with N = 0.01), radiation is 
important and acts over the entire domain. A notable feature of this case is the significant 
departure of the isotherms along the bottom surface from the vertical. For this simulation, the 
radiative flux is significant at all surfaces; this effect, acting through (40), produces the slanting 
of the isotherms at the bottom surface. 

The case of Τ = 1 and N = 1 is the most challenging and demonstrates that our method is 
viable for all values of radiation parameters. This result represents the situation where radiation 
and conduction heat transfer are everywhere important, and the temperature field is quite different 
from the conduction-dominated cases discussed above, especially along the bottom surface and 
centerline. There is a slight, but noticeable, deviation of the isotherms from the vertical as they 
meet the bottom surface, indicating the relative importance of the radiative flux component in 
the boundary condition. 

Bridgman growth of a semitransparent crystal 
Our final model problem demonstrates the utility of our method and, in fact, was the primary 

motivation for its development. A more complete set of results for a similar problem are given 
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elsewhere36, and further enhancements of the model are discussed in a separate paper3 . We 
consider the Bridgman growth of crystalline yttrium aluminium garnet (YAG), an important 
laser host material. Several experimental studies have speculated that internal radiative heat 
transfer strongly affects the crystal growth process for YAG38,39. 

The physical properties of our model system are listed in Table 2. Operating parameters and 
system geometry (taken from experimental literature) are listed in Table 3. Note that for this 
system the conduction-to-radiation parameter is N = 0.13, the optical thickness is Τ = 0.65, and 
the aspect ratio of the cylindrical ampoule is Λ = 0.043. 

In the simulations presented here, 5 radial x 7 axial biquadratic elements were used in both 
the crystal and melt domains. The longitude a was divided into eight equal segments, and a 
three-point quadrature rule was applied in each segment. Within each of the two regions 
θ2 < θ < θ1 and θ1 ≤ θ ≤ π (viewing the ampoule side wall and bottom surface, respectively), 
the colatitude θ was divided into eight equal segments, and a three point quadrature rule was 
applied in each segment. For the region which views the melt/crystal interface, 0 ≤ θ ≤ θ2, the 
transformation variable y was employed. The variable y was divided into eight equal segments, 
and a three point quadrature rule was applied in each segment. The path integrals were discretized 

Table 2 Physical properties for the Bridgman crystal growth system 

Description 

Absorption coefficient 
Emissivity 

Heat of fusion 
Thermal conductivity 

Refractive index 
Density of solid 
Melting point 

Symbol 

a 

εi 

εo 
εm5 

∆Hf 

km 
Ks 
n 

P. 
Tmp 

Value 

1.0 cm -1 

0.3 
0.3 
0.3 

455.4 J/g 
0.05 W/cm K 
0.1 W/cm K. 
1.8 
4.3 g/cm3 

2243 K 

Comments 

YAG crystal, estimated from Reference 61 
Molybdenum ampoule inner wall1.62 

Molybdenum ampoule outer wall1'62 

estimated from properties of gadolinium 
gallium garnet (GGG)63 

estimated from properties of GGG64 

estimated from properties of GGG64 

YAG65 

YAG crystal66 

YAG67 

YAG68 

Table 3 Operating parameters for the Bridgman crystal growth system 

Description 

Furnace temperature gradient 

Ambient heat transfer coefficient 

Ampoule length 
Length of adiabatic zone 
Ampoule radius 
Hot zone temperature 
Cold zone temperature 
Ampoule pull rate 
Position of adiabatic zone centre 

Symbol 

G 

hIhII 

L 
LA 

R 

Tk 
Tc 

Vp 
ZA 

Base case value 

80 K/cm 

3.5 × 10 -3W/cm2K 
1.5 × 10-3 W/cm2 K 

15.0 cm 
5.0 cm 
0.65 cm 

2443 K 
2043 K 

3.6 mm/h 
7.5 cm 

Comments 

Symmetric about centre of adia­
batic zone, estimated from Refer­
ence 69 
estimated70 

estimated70 

estimated71.72 

— 
estimated71,72 

— 
— 
estimated71,72 

Varied from 2.5 cm to 12.5 cm 
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using a single segment with five Gauss points. Convergence tests were performed using these 
discretizations; selected test-case temperature contours and interface shapes were found not to 
change in appearance upon further discretization. Typical CPU requirements on the Cray-2 
supercomputer were approximately 7 min per iteration with 5-7 iterations needed for 
convergence using the same convergence criterion as before, ||δ(k)||l2 < 10 -7 . The relatively higher 
CPU times for this model are due to the finer discretizations employed and the inability to 
apply the Swartz-Wendroff approximation method. 

The results shown here simulate stages of a growth run, in which the relative position of the 
adiabatic zone shifts along the ampoule. The temperature field and interface shape were 
recalculated at each new position of the ampoule within the furnace. As can be seen in Figure 
12, the isotherms do not change much in shape or position relative to the interface. 

There is a small increase in the centreline axial temperature gradient in the melt at the interface 
as the solidification process proceeds (see Figure 13), and a corresponding decrease of the 
gradient on the crystal side of the interface. Both of these trends diminish towards the end of 
the growth run. These effects are explained by the changing geometry of the crystalline phase 
and the changing position of the ampoule in the furnace as growth proceeds. The radiative flux 
through the crystal increases as the bottom of the ampoule moves progressively further into the 
cold zone and the lower portions of crystal and ampoule cool. This effect increases the overall 
axial heat flux through the system, which is matched by the increasing axial gradient in the 
melt. The increase in axial flux through the crystalline phase is due wholly to radiative transport; 
in fact, so much heat is transported by radiant energy that the axial conductive flux in the crystal 
actually decreases as growth proceeds, as indicated by the decrease in the crystal temperature 
gradient. These trends lessen as the growth progresses, since there is a continuing increase in 
the axial optical thickness which causes a radiative screening effect—the lower, cooler portions 
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of the crystal and ampoule become optically far enough from the interface that their effect on 
the overall heat transfer is eventually attenuated. 

These effects were further investigated by examining the 'heat load' in Figure 14. The heat 
load is a measure of the total thermal energy flowing through the system and is calculated as the 
integrated positive heat flux (i.e. pointing inwards) over the ampoule. This quantity rises rapidly 
as growth initially proceeds and soon attains a nearly constant value for the rest of the run. 
This is in agreement with the above explanation of the results presented in Figure 13. The 
radiative screening effect is readily apparent by the leveling of the curve at zA ≈ 5 cm in Figure 
14. The more dramatic change of the heat load compared to the axial temperature gradients as 
growth proceeds is due to the fact that the heat load is an integrated measure, taking into 
account the full geometry of the system, while the axial centreline gradients represent local, 
one-dimensional quantities. 

Finally, melt/crystal interface shapes are shown in Figure 15. These shapes do not exhibit 
drastic changes in curvature during the growth, thus indicating that the heat transfer through 
the system is dominated by axial fluxes. This is expected for the small aspect ratio of this geometry 
(long, slender ampoule) which is nearly one-dimensional; however, when the crystal is grown 
in an ampoule whose thickness is not negligible, there is more radial curvature present in the 
interface with internal radiation acting than for the case of conduction heat transfer alone37. 

CONCLUSIONS 

A robust Galerkin finite element method for the solution of combined radiative and conductive 
transport in axisymmetric geometries of any optical thickness has been developed. The accuracy 
of the method has been tested successfully against several benchmark solutions, and its versatility 
was demonstrated in a complicated free-boundary problem, with reasonable associated 
computational costs. Significant computational savings are possible by taking advantage of the 
Swartz-Wendroff approximation, which, for a fixed discretized geometry and optical thickness, 
allows geometric factors to be calculated once and used over again. This is very useful when 
repeating similar calculations on the same system. 

One difficulty encountered here in solving the integro-differential equations describing 
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combined mode, conduction-radiation heat transfer is that testing for convergence of the method 
is not nearly as straightforward as in more conventional heat transfer problems (i.e. those 
described by partial differential equations). Not only must one check for numerical convergence 
by refining the finite element mesh, one must also refine the quadrature (in three separate 
discretizations) for the radiation integrals. The effects of changing all four discretizations are 
mutually dependent. To ensure a numerically convergent solution, one must make sure that 
convergence is obtained in all four and is sustained upon further refinement of one or more of 
the discretizations. This feature, which is often overlooked by practitioners, is generic to any 
solution method applied to integro-differential equations. 

There are several extensions to this method which are of interest. Since the main complexity 
of this method is associated with the evaluation of the three-dimensional, solid angle radiation 
integrals, extensions to a fully three-dimensional temperature field should be relatively 
straightforward to implement. However, the associated computational cost will increase 
substantially, since many more integral evaluations will be needed for a three-dimensional finite 
element mesh. Including most temperature-dependent properties in the analysis is 
straightforward, although potential difficulties arise in several situations. One complication, 
which arises from a temperature-dependent absorption coefficient (or dimensionless optical 
thickness, Τ), is created by the need to relate the geometric path length l to the optical path 
length K, which is the quantity which rigorously appears in the exponential terms of the integrated 
equation of transfer, 



FEM FOR CONDUCTION, INTERNAL RADIATION AND SOLIDIFICATION 323 

For a non-uniform absorption coefficient, 

Including a temperature-dependent refractive index n in the analysis is very difficult, since ray 
paths would curve in space from this effect. Fortunately, n is usually a weak function both of 
temperature and of wavelength in semitransparent solids, see for example Reference 60. The 
incorporation of wavelength-dependent properties is straightforward; however, an extra 
integration (over wavelength) must be performed, creating a considerable increase in 
computational expense. Already, most of the effort involves evaluation of the radiative terms. 

Including the effects of scattering should not, in principle, be difficult. For example, this can 
be achieved in many cases by considering a position-dependent source function to be determined 
by scattering relationships and expanded with a separate finite element basis set32. This particular 
extension is not important, however, for modelling the solidification of semitransparent crystals, 
since scattering is usually negligible in a large, pure crystal. 

Application of this method to other research areas is of interest. These include the study of 
glass processing, optical fibre drawing techniques, and combustion systems, amongst others. 
Obviously, in some applications, one must be careful and take into account effects neglected 
here (e.g. scattering in combustion furnaces, see previous paragraph). 
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APPENDIX A 

Net radiative flux at the system boundaries 
The net radiative flux into the system at its boundaries, described in general terms by (19), is 

detailed below. The solid angle integral in this equation is similar to the one given in (29), 
except that the point of interest is on one of the boundaries, therefore the integral is only 
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performed over a hemisphere. The detailed form of (19) is given by the following expressions. 
Along the bottom boundary of the domain, we have 

The flux incoming from the top boundary is given by: 

The flux incoming from the side wall is: 
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In the equations above, the * superscript distinguishes surface quantities which vary with 
solid angle. The integration limits, θ*1 and θ*2 (see Figure 16) also depend on the point at which 
qR· (—nb1) or qR· (—nb2) are evaluated. However, these quantities do not need to be explicitly 
calculated, since the variable of integration is changed from 0 to y (see Appendix B), and these 
limits are transformed from θ = θ*j ( j=1 ,2) to y = 0, and from θ = θj ( j=1,2) to 
y = (sin Φz/(sin α). The direction cosines (cos(ψkj),j = 1,2,3; k = 1,2, r) are evaluated with 
(30) and (31), together with the expression for nbj*, (j = 1,2), 

All other parameters in these equations follow the definitions employed in (29). 

APPENDIX B 

Choice of integration variables 
An appropriate choice of integration variables must be made to make the evaluation of the 

radiation integrals feasible. This choice should allow all expressions in the integrand to be 
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evaluated explicitly and should be easily related to the system geometry. Below, we detail our 
choices. 

We employ a new variable y to be used as the integration variable instead of 0 for evaluating 
all integrals viewing the top and bottom of the enclosure, i.e. for j = 1,2 (see Figure 5). Without 
this transformation, the integrals are implicit. From any point in space (r,z), we determine ray 
lengths, l1 and l2, in the following manner. The radial coordinate of the point of intersection 
between the ray and the boundary is determined by: 

which is derived from the law of cosines. The boundary axial coordinate is determined directly 
from zbj = zbj(rbj) (j = 1,2), which is a known relation from the system geometry. The ray length 
(lj, j = 1,2) is determined by: 

In addition, the colatitude θ can be calculated as, 

The limits of integration are also transformed: for; = 1, 

and, for j = 2, 

The change of variable from θ to y also requires the inclusion of the one-dimensional Jacobian 
of transformation to the new integral, given by: 

For integrals viewing the side wall (j = 3), the integrals remain explicit in colatitude θ. In 
this case, the ray length l3 is given by: 

The axial coordinates of the intersection of the ray with the boundary are given by: 

For all integrals, the evaluation of terms along the ray direction depends on relating the path 
distance l†j to the cylindrical coordinates r(l†J) and z(l†j). These are computed with: 

and 

where ∆l†j = lj - l†j and 7 = 1,2,3. 
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APPENDIX C 

Numerical evaluation of the radiation integrals 
There are three major issues in the numerical evaluation of the radiation solid angle integrals. 

The first concerns the specific quadrature techniques employed for numerical integration. The 
second issue involves the self-consistent interpolation of the temperature field at those quadrature 
points. The final issue concerns simplifications which can be implemented when attenuation 
from the exponential term in the integrand is significant. We discuss these issues below. 

Consistent with the standard evaluation techniques for the Galerkin weighted residuals, we 
require the evaluation of the solid angle radiation integrals at each finite element quadrature 
point. At these points (r and z known), we define the localized spherical coordinate system 
defined in Figures 4 and 5 and employ a repeated Gaussian quadrature technique to evaluate 
the solid angle radiation integrals. (We define repeated Gaussian quadrature here as standard 
Gaussian quadrature applied over each of several subdomains.) Specifically, the longitude a, 
which ranges from 0 to π, is divided into segments, and within each segment this angle is further 
discretized using Gauss-Legendre quadrature spacings. At each a quadrature point, a meridional 
plane is defined (see Figure 5b), which is discretized in the θ coordinate. This is done in the 
three separate regions described earlier. Within the region θ2 < θ < θ1 which is bounded by 
the side wall, the angle θ is divided into segments. Within each segment, the angle is further 
discretized using the above-mentioned quadrature rule. In the other two regions, the colatitude 
θ is not directly discretized, rather the spatial variable y is discretized with the same approach 
as the discretization of a. The transformation of variables from θ to y, which is described in 
Appendix B, is not necessary when the geometry of the top and bottom boundaries is of a form 
that allows for explicit integration while discretizing θ directly (e.g. a finite right circular cylinder). 
Finally the ray length (l†J) is discretized, again in a repeated quadrature scheme as described 
above. 

The quadrature scheme described above results in a large set of spatial points at which 
temperatures or fluxes must be determined. We determine these values from the finite element 
representations, (15) and (20). In the general case, this is not a trivial matter. The finite element 
basis functions are defined using a local non-linear isoparametric mapping for each element. 
The isoparametric mapping consists of the element-by-element transformation of a coordinate 
system (ξ, η), in which the element is a square, ( —1 ≤ ξ ≤ 1, — 1 ≤ η ≤ 1), into the (r,z) 
coordinate system (see Figure 17). The two coordinate systems are related via the following 
equation, 

where ri and zi are the nodal coordinate values. The local forms of the global basis functions, 
{Φi(r,z)} and {Γi(x)}, are given by {Φi'(ξ;η)} ( i = 1 , . . . , 9 ) and {yi(ξ)} (i = l , . . . , 3 ) 
respectively and are tabulated elsewhere73. Finding the value of a field quantity at an arbitrary 
point in the domain is usually a time-consuming numerical operation, since the inverse mapping 
(from (r,z) to (ξ, η)) is not generally analytical. Fortunately, by careful construction of the 
finite element mesh, it is possible to find an analytical inverse mapping. 

Our procedure to rigorously interpolate the value of a field variable from the finite element 
representation is as follows. Once a point is specified, i.e. the global coordinates (r, z) are known, 
the element in which the point rests is identified, and then the global coordinates are transformed 
into the local coordinates (ξ, η) using the inverse of the mapping (60). If the mesh comprises 
elements whose vertical sides are parallel to the z-axis (as is the case for our problems, see Figure 
17), it is possible to do the elemental search in a simple, two-step operation. First, the appropriate 
column of elements (all sharing the same radial-coordinate values) is identified, and then the 
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appropriate element is located via a search in the axial direction. We next employ the following 
inverse mapping: 

where 

The following restrictions must be implemented in the mesh generating procedure for this 
transformation to hold: 

When applying the Swartz-Wendroff approximation, one need not evaluate the temperature 
at (r,z), rather, one must calculate the value of the finite element basis functions at this point. 
It is, however, still necessary to locate the element containing the point of interest and to invert 
the isoparametric mapping as outlined above. 

When the domain is optically thick (i.e. aR » 1 or aL » 1), the rapid decay of the exponentials 
in the radiative terms calls for a change of numerical strategy. We apply certain 'cut-off' criteria 
to decide when it is appropriate to ignore the contribution of certain terms in the integral. 
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In the calculations presented here, volume terms (or line integrals) were truncated at an 
optical distance of τ (l — l†) = 20. The volume terms were evaluated according to the following 
rule: 

For optically thick cases, this procedure results in significant computational savings with no 
significant loss in accuracy. 

For surface terms in (29), i.e. the first three terms, we employ two cut-off criteria for deciding 
when to ignore these terms. First, if the minimum optical distance τlj (j = 1,2, 3) to one of 
the three boundaries is larger than some critical value, then the surface contributions from that 
boundary should be neglected. If the surface integral is not to be neglected, then a second cut-off 
criterion will determine the limits of the integrals of these surface terms. 

Evaluating and applying these cut-off criteria to the surface terms is not always straightforward. 
We first estimate the minimum distance to each of the three surfaces from the point of interest. 
The distance to the side surface L3 is always given by a line in the plane α = 0, and is 

The distances to the top and bottom surfaces is difficult to calculate, since the surfaces may be 
curved. For surfaces which are relatively flat, these distances (L1 and L2) are often 
well-approximated by the axial distance between the point of interest and these boundaries, so 
that, 

and 

Next we check to see if each surface is too far away (optically). The cut-off distance that was 
used in this study was on the order of 20-30, so that if τLj (j = 1, 2, 3) proved to be larger 
than this value, the complete surface term was discarded. If the surface terms were not discarded, 
a second criterion was invoked. This entailed truncating (when necessary) the limits of the solid 
angle integrals of the surface terms in a manner which would keep τ(lj — Lj) (j = 1,2, 3) below 
the value of the second criterion (0(20)). In the case of j = 3 this involved possible truncation 
both in a and in 0. When j = 1,2 truncation was considered only in 8, since the minimum 
distance from (r, z) to the top and bottom surfaces, within a plane of constant a, is independent 
of a and is therefore equal to Lj,j =1 ,2 . 
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APPENDIX D 

Geometric factors from the Swartz-Wendroff approximation 
The matrices in (35) and (37) are determined using the following relations. For the matrix A, 

where i,j = 1 , . . . ,NT. 
Coefficients of B are given by, 

where i = l,...,NT and j = 1 , . . . , NTb, the number of nodes on the part of the boundary 
where a flux condition is given (∂Df). 

The matrix C has entries of the following form, 

where i = 1 , . . . , NT and j = 1 , . . . , Nq, the number of nodes on the part of the boundary where 
a Dirichlet condition is given (∂Dd). 
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Finally, the coefficients of E are: 

where i = 1 , . . . , NT, while out of the set of basis functions {Φ(j)}, j = 1 , . . . , NT, one should 
only consider those that are associated with the boundary nodes on ∂Df. This is because the 
matrix E is derived from terms involving temperature gradients on ∂Df. 

The vectors employed in the Swartz-Wendroff approximation are calculated as follows, 

and 

where i = 1 , . . . , NT. The quantities (qb· (— nbk) and Tbk, k = 1,2, 3) are supplied as boundary 
conditions. 

The one-dimensional Galerkin weighted integral of the last six terms in (46)-(48) over the 
boundary ∂Dd together with the Swartz-Wendroff approximation are used to determine the 
matrices and vectors in (36) and (38). The details are analogous to those shown above and 
will therefore not be presented here. 


